Решение задач » Решебники онлайн » Решебники по физике онлайн » Решебник Чертов онлайн (ГДЗ Чертов - решение задач из задачника, соавтор Воробьев)
Решебник Чертов онлайн
Решебник Чертова, Воробьева по физике

20. Ток в металлах, жидкостях и газах

1 По железному проводнику, диаметр сечения которого равен 0,6 мм, течет ток 16 A. Определить среднюю скорость направленного движения электронов, считая, что концентрация n свободных электронов равна концентрации n атомов проводника.
СМОТРЕТЬ РЕШЕНИЕ

2 В цепь источника постоянного тока с ЭДС 6 В включен резистор сопротивлением 80 Ом. Определить плотность тока в соединительных проводах площадью поперечного сечения 2 мм2; число N электронов, проходящих через сечение проводов за время t=1 c. Сопротивлением источника тока и соединительных проводов пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

3 Пространство между пластинами плоского конденсатора имеет объем 375 см3 и заполнено водородом, который частично ионизирован. Площадь пластин конденсатора 250 см2. При каком напряжении U между пластинами конденсатора сила тока I, протекающего через конденсатор, достигнет значения 2 мкА, если концентрация n ионов обоих знаков в газе равна 5,3*107 см-3? Принять подвижность ионов b+=5,4*10-4 м2/(В*с), b-=7,4*10-4 м2/(В*с).
СМОТРЕТЬ РЕШЕНИЕ

4 Определить скорость u мкм/ч, с которой растет слой никеля на плоской поверхности металла при электролизе, если плотность тока, протекающего через электролит, равна 30 А/м. Никель считать двухвалентным.
СМОТРЕТЬ РЕШЕНИЕ

20.1 Сила тока в металлическом проводнике равна 0,8 A, сечение проводника 4 мм2. Принимая, что в каждом кубическом сантиметре металла содержится n=2,5*10^22 свободных электронов, определить среднюю скорость их упорядоченного движения.
СМОТРЕТЬ РЕШЕНИЕ

20.2 Определить среднюю скорость упорядоченного движения электронов в медном проводнике при силе тока 10 А и сечении проводника, равном 1 мм2. Принять, что на каждый атом меди приходится два электрона проводимости.
СМОТРЕТЬ РЕШЕНИЕ

20.3 Плотность тока в алюминиевом проводе равна 1 А/мм2. Найти среднюю скорость упорядоченного движения электронов, предполагая, что число свободных электронов в 1 см3 алюминия равно числу атомов.
СМОТРЕТЬ РЕШЕНИЕ

20.4 Плотность тока в медном проводнике равна 3 А/мм2. Найти напряженность электрического поля в проводнике.
СМОТРЕТЬ РЕШЕНИЕ

20.5 В медном проводнике длиной 2 м и площадью поперечного сечения, равной 0,4 мм2, идет ток. При этом ежесекундно выделяется количество теплоты 0,35 Дж. Сколько электронов N проходит за 1 с через поперечное сечение этого проводника?
СМОТРЕТЬ РЕШЕНИЕ

20.6 В медном проводнике объемом 6 см3 при прохождении по нему постоянного тока за время 1 мин выделилось количество теплоты 216 Дж. Вычислить напряженность E электрического поля в проводнике.
СМОТРЕТЬ РЕШЕНИЕ

20.7 Металлический проводник движется с ускорением 100 м/с2. Используя модель свободных электронов, определить напряженность E электрического поля в проводнике.
СМОТРЕТЬ РЕШЕНИЕ

20.8 Медный диск радиусом 0,5 м равномерно вращается (104 рад/с) относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить разность потенциала между центром диска и его крайними точками.
СМОТРЕТЬ РЕШЕНИЕ

20.9 Металлический стержень движется вдоль своей оси со скоростью 200 м/с. Определить заряд, который протечет через гальванометр, подключаемый к концам стержня, при резком его торможении, если длина стержня равна 10 м, а сопротивление R всей цепи включая цепь гальванометра равно 10 мОм.
СМОТРЕТЬ РЕШЕНИЕ

20.10 Удельная проводимость у металла равна 10 МСм/м. Вычислить среднюю длину свободного пробега электронов в металле, если концентрация n свободных электронов равна 10^28 м-3. Среднюю скорость хаотического движения электронов принять равной 1 Мм/с.
СМОТРЕТЬ РЕШЕНИЕ

20.11 Исходя из модели свободных электронов, определить число соударений, которые испытывает электрон за время 1 c, находясь в металле, если концентрация n свободных электронов равна 10^29 м-3. Удельную проводимость у металла принять равной 10 МСм/м.
СМОТРЕТЬ РЕШЕНИЕ

20.12 Исходя из классической теории электропроводности металлов, определить среднюю кинетическую энергию электронов в металле, если отношение теплопроводности к удельной проводимости равно 6,7*10-6 B2/К.
СМОТРЕТЬ РЕШЕНИЕ

20.13 Определить объемную плотность тепловой мощности в металлическом проводнике, если плотность тока 10 А/мм2. Напряженность E электрического поля в проводнике равна 1 мВ/м.
СМОТРЕТЬ РЕШЕНИЕ

20.14 Термопара медь-константан с сопротивлением 5 Ом присоединена к гальванометру, сопротивление которого равно 100 Ом. Один спай термопары погружен в тающий лед, другой в горячую жидкость. Сила тока 1 в цепи равна 37 мкА. Постоянная термопары k=43 мкВ/К. Определить температуру t жидкости.
СМОТРЕТЬ РЕШЕНИЕ

20.15 Сила тока 1 в цепи, состоящей из термопары с сопротивлением 4 Ом и гальванометра с сопротивлением 80 Ом, равна 26 мкА при разности температур спаев, равной 50 °С. Определить постоянную k термопары.
СМОТРЕТЬ РЕШЕНИЕ

20.16 При силе тока 5 А за время 10 мин в электролитической ванне выделилось 1,02 г двухвалентного металла. Определить его относительную атомную массу Аr.
СМОТРЕТЬ РЕШЕНИЕ

20.17 Две электролитические ванны соединены последовательно. В первой ванне выделилось 3,9 г цинка, во второй за то же время 2,24 г железа. Цинк двухвалентен. Определить валентность железа.
СМОТРЕТЬ РЕШЕНИЕ

20.18 Электролитическая ванна с раствором медного купороса присоединена к батарее аккумуляторов с ЭДС 4 В и внутренним сопротивлением 0,1 Ом. Определить массу меди, выделившейся при электролизе за время t=10 мин, если ЭДС поляризации 1,5 В и сопротивление R раствора равно 0,5 Ом. Медь двухвалентна.
СМОТРЕТЬ РЕШЕНИЕ

20.19 Определить толщину слоя меди, выделившейся за время t=5 ч при электролизе медного купороса, если плотность тока 80 А/м2.
СМОТРЕТЬ РЕШЕНИЕ

20.20 Сила тока, проходящего через электролитическую ванну с раствором медного купороса, равномерно возрастает в течение времени 20 с от I0=0 до I=2 A. Найти массу меди, выделившейся за это время на катоде ванны.
СМОТРЕТЬ РЕШЕНИЕ

20.21 В электролитической ванне через раствор прошел заряд 193 кКл. При этом на катоде выделился металл количеством вещества 1 моль. Определить валентность Z металла.
СМОТРЕТЬ РЕШЕНИЕ

20.22 Определить количество вещества и число атомов N двухвалентного металла, отложившегося на катоде электролитической ванны, если через раствор в течение времени t=5 мин шел ток силой 2 A
СМОТРЕТЬ РЕШЕНИЕ

20.23 Сколько атомов двухвалентного металла выделится на 1 см2 поверхности электрода за время t=5 мин при плотности тока 10 А/м2?
СМОТРЕТЬ РЕШЕНИЕ

20.24 Энергия ионизации атома водорода 2,18*10-18 Дж. Определить потенциал ионизации Ui водорода.
СМОТРЕТЬ РЕШЕНИЕ

20.25 Какой наименьшей скоростью должен обладать электрон, чтобы ионизировать атом азота, если потенциал ионизации азота равен 14,5 В
СМОТРЕТЬ РЕШЕНИЕ

20.26 Какова должна быть температура атомарного водорода, чтобы средняя кинетическая энергия поступательного движения атомов была достаточна для ионизации путем соударений? Потенциал ионизации Ui атомарного водорода равен 13,6 B.
СМОТРЕТЬ РЕШЕНИЕ

20.27 Посередине между электродами ионизационной камеры пролетела α-частица, двигаясь параллельно электродам, и образовала на своем пути цепочку ионов. Спустя какое время после пролета α-частицы ионы дойдут до электродов, если расстояние между электродами равно 4 см, разность потенциалов U=5 кВ и подвижность ионов обоих знаков в среднем b=2 см2/(В*с)?
СМОТРЕТЬ РЕШЕНИЕ

20.28 Азот ионизируется рентгеновским излучением. Определить проводимость азота, если в каждом кубическом сантиметре газа находится в условиях равновесия n0=10^7 пар ионов. Подвижность положительных ионов b+ = 1,27 см2/(В*с) и отрицательных b_= 1,81 см2/(В*с).
СМОТРЕТЬ РЕШЕНИЕ

20.29 Воздух между плоскими электродами ионизационной камеры ионизируется рентгеновским излучением. Сила тока, текущего через камеру, равна 1,2 мкА. Площадь каждого электрода равна 300 см2, расстояние между ними d=2 см, разность потенциалов U=100 B. Найти концентрацию n пар ионов между пластинами, если ток далек от насыщения. Подвижность положительных ионов b+=1,4 см2/(В*с) и отрицательных b-=1,9 см2/(В*с). Заряд каждого иона равен элементарному заряду.
СМОТРЕТЬ РЕШЕНИЕ

20.30 Объем газа, заключенного между электродами ионизационной камеры, равен 0,5 л. Газ ионизируется рентгеновским излучением. Сила тока насыщения 4 нА. Сколько пар ионов образуется в 1 с в 1 см3 газа? Заряд каждого иона равен элементарному заряду.
СМОТРЕТЬ РЕШЕНИЕ

20.31 Найти силу тока насыщения между пластинами конденсатора, если под действием ионизатора в каждом кубическом сантиметре пространства между пластинами конденсатора ежесекундно образуется n0=10^8 пар ионов, каждый из которых несет один элементарный заряд. Расстояние d между пластинами конденсатора равно 1 см. площадь S пластины равна 100 см2.
СМОТРЕТЬ РЕШЕНИЕ

20.32 В ионизационной камере, расстояние между плоскими электродами которой равно 5 см, проходит ток насыщения плотностью j=16 мкА/м2. Определить число пар ионов, образующихся в каждом кубическом сантиметре пространства камеры в 1 c.
СМОТРЕТЬ РЕШЕНИЕ
21. Магнитное поле постоянного тока

1 Два параллельных бесконечно длинных провода, по которым текут в одном направлении токи 60 A, расположены на расстоянии 10 см друг от друга. Определить магнитную индукцию B в точке, отстоящей от одного проводника на расстоянии r1=5 см и от другого — на расстоянии r2=12 см.
СМОТРЕТЬ РЕШЕНИЕ

2 По двум длинным прямолинейным проводам, находящимся на расстоянии 5 см друг от друга в воздухе, текут токи 10 А каждый. Определить магнитную индукцию поля, создаваемого токами в точке, лежащей посередине между проводами, для случаев: 1) провода параллельны, токи текут в одном направлении (рис. 21.3, а); 2) провода параллельны, токи текут в противоположных направлениях (рис. 21.3, б); 3) провода перпендикулярны, направление токов указано на рис. 21.3, в.
СМОТРЕТЬ РЕШЕНИЕ

3 Определить магнитную индукцию B поля, создаваемого отрезком бесконечно длинного прямого провода, в точке, равноудаленной от концов отрезка и находящейся на расстоянии 20 см от середины его. Сила тока I, текущего по проводу, равна 30 A, длина l отрезка равна 60 см.
СМОТРЕТЬ РЕШЕНИЕ

4 Длинный провод с током 50 А изогнут под углом 2π/3. Определить магнитную индукцию в точке A. Расстояние d=5 см.
СМОТРЕТЬ РЕШЕНИЕ

5 По тонкому проводящему кольцу радиусом 10 см течет ток 80 A. Найти магнитную индукцию B в точке A, равноудаленной от всех точек кольца на расстояние r=20 см.
СМОТРЕТЬ РЕШЕНИЕ

6 Бесконечно длинный проводник изогнут так, как это изображено на рис. 21.8. Радиус дуги окружности 10 см. Определить магнитную индукцию B поля, создаваемого в токе O током I=80 A, текущим по этому проводнику.
СМОТРЕТЬ РЕШЕНИЕ

21.1 Напряженность магнитного поля равна 79,6 кА/м. Определить магнитную индукцию этого поля в вакууме.
СМОТРЕТЬ РЕШЕНИЕ

21.2 Магнитная индукция В поля в вакууме равна 10 мТл. Найти напряженность магнитного поля.
СМОТРЕТЬ РЕШЕНИЕ

21.3 Вычислить напряженность магнитного поля, если его индукция в вакууме 0,05 Тл
СМОТРЕТЬ РЕШЕНИЕ

21.4 Найти магнитную индукцию в центре тонкого кольца, по которому идет ток 10 A. Радиус r кольца равен 5 см.
СМОТРЕТЬ РЕШЕНИЕ

21.5 По обмотке очень короткой катушки радиусом 16 см течет ток 5 A. Сколько витков проволоки намотано на катушку, если напряженность магнитного поля в ее центре равна 800 А/м?
СМОТРЕТЬ РЕШЕНИЕ

21.6 Напряженность H магнитного поля в центре кругового витка радиусом 8 см равна 30 А/м. Определить напряженность H1
СМОТРЕТЬ РЕШЕНИЕ

21.7 При какой силе тока, текущего по тонкому проводящему кольцу радиусом 0,2 м, магнитная индукция в точке, равноудаленной от всех точек кольца на расстояние 0,3 м, станет равной 20 мкТл?
СМОТРЕТЬ РЕШЕНИЕ

21.8 По проводнику в виде тонкого кольца радиусом 10 см течет ток. Чему равна сила тока, если магнитная индукция В поля в точке A (рис. 21.10) равна 1 мкТл? Угол β=10°.
СМОТРЕТЬ РЕШЕНИЕ

21.9 Катушка длиной 20 см содержит 100 витков. По обмотке катушки идет ток 5 A. Диаметр катушки равен 20 см. Определить магнитную индукцию В в точке, лежащей на оси катушки на расстоянии a=10 см от ее конца.
СМОТРЕТЬ РЕШЕНИЕ

21.10 Длинный прямой соленоид из проволоки диаметром 0,5 мм намотан так, что витки плотно прилегают друг к другу. Какова напряженность магнитного поля внутри соленоида при силе тока 4 А? Толщиной изоляции пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

21.11 Обмотка катушки диаметром 10 см состоит из плотно прилегающих друг к другу витков тонкой проволоки. Определить минимальную длину катушки, при которой магнитная индукция в середине ее отличается от магнитной индукции бесконечного соленоида, содержащего такое же количество витков на единицу длины, не более чем на 0,5 %. Сила тока, протекающего по обмотке, в обоих случаях одинакова.
СМОТРЕТЬ РЕШЕНИЕ

21.12 Обмотка соленоида выполнена тонким проводом с плотно прилегающими друг к другу витками. Длина катушки равна 1 м, ее диаметр 2 см. По обмотке идет ток. Вычислить размеры участка на осевой линии, в пределах которого магнитная индукция может быть вычислена по формуле бесконечного соленоида с погрешностью, не превышающей 0,1 %.
СМОТРЕТЬ РЕШЕНИЕ

21.13 Тонкая лента шириной 40 см свернута в трубку радиусом 30 см. По ленте течет равномерно распределенный по ее ширине ток 200 A (рис. 21.11). Определить магнитную индукцию В на оси трубки в двух точках: 1) в средней точке; 2) в точке, совпадающей с концом трубки.
СМОТРЕТЬ РЕШЕНИЕ

21.14 По прямому бесконечно длинному проводнику течет ток 50 A. Определить магнитную индукцию в точке, удаленной на расстояние 5 см от проводника.
СМОТРЕТЬ РЕШЕНИЕ

21.15 Два длинных параллельных провода находятся на расстоянии 5 см один от другого. По проводам текут в противоположных направлениях одинаковые токи 10 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии r1=2 см от одного и r2=3 см от другого провода.
СМОТРЕТЬ РЕШЕНИЕ

21.16 Расстояние между двумя длинными параллельными проводами равно 5 см. По проводам в одном направлении текут одинаковые токи 30 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии r1=4 см от одного и r2 =3 см от другого провода.
СМОТРЕТЬ РЕШЕНИЕ

21.17 По двум бесконечно длинным прямым параллельным проводам текут токи 50 А и 100 А в противоположных направлениях. Расстояние между проводами равно 20 см. Определить магнитную индукцию в точке, удаленной на r1=25 см от первого и на r2=40 см от второго провода.
СМОТРЕТЬ РЕШЕНИЕ

21.18 По двум бесконечно длинным прямым параллельным проводам текут токи 20 А и 30 А в одном направлении. Расстояние между проводами равно 10 см. Вычислить магнитную индукцию в точке, удаленной от обоих проводов на одинаковое расстояние r=10 см.
СМОТРЕТЬ РЕШЕНИЕ

21.19 Два бесконечно длинных прямых провода скрещены под прямым углом. По проводам текут токи 80 А и 60 A. Расстояние между проводами равно 10 см. Определить магнитную индукцию В в точке A, одинаково удаленной от обоих проводников.
СМОТРЕТЬ РЕШЕНИЕ

21.20 По двум бесконечно длинным прямым проводам, скрещенным под прямым углом, текут токи 30 А и 40 A. Расстояние между проводами равно 20 см. Определить магнитную индукцию в точке C, одинаково удаленной от обоих проводов на расстояние, равное d.
СМОТРЕТЬ РЕШЕНИЕ

21.21 Бесконечно длинный прямой провод согнут под прямым углом. По проводнику течет ток 20 A. Какова магнитная индукдня в точке A, если r=5 см?
СМОТРЕТЬ РЕШЕНИЕ

21.22 По бесконечно длинному прямому проводу, изогнутому так, как это показано на рис. 21.14, течет ток 100 A. Определить магнитную индукцию в точке O, если r=10 см.
СМОТРЕТЬ РЕШЕНИЕ

21.23 Бесконечно длинный прямой провод согнут под прямым углом. По проводу течет ток 100 A. Вычислить магнитную индукцию в точках, лежащих на биссектрисе угла и удаленных от вершины угла на a=10 см.
СМОТРЕТЬ РЕШЕНИЕ

21.24 По бесконечно длинному прямому проводу, согнутому под углом 120, течет ток 50 A. Найти магнитную индукцию в точках, лежащих на биссектрисе угла и удаленных от вершины его на расстояние a=5 см.
СМОТРЕТЬ РЕШЕНИЕ

21.25 По контуру в виде равностороннего треугольника идет ток 40 A. Длина стороны треугольника равна 30 см. Определить магнитную индукцию в точке пересечения высот.
СМОТРЕТЬ РЕШЕНИЕ

21.26 По контуру в виде квадрата идет ток 50 A. Длина стороны квадрата равна 20 см. Определить магнитную индукцию В в точке пересечения диагоналей.
СМОТРЕТЬ РЕШЕНИЕ

21.27 По тонкому проводу, изогнутому в виде прямоугольника, течет ток 60 A. Длины сторон прямоугольника равны 30 см и 40 см. Определить магнитную индукцию В в точке пересечения диагоналей.
СМОТРЕТЬ РЕШЕНИЕ

21.28 Тонкий провод изогнут в виде правильного шестиугольника. Длина стороны шестиугольника равна 10 см. Определить магнитную индукцию в центре шестиугольника, если по проводу течет ток I=25 A.
СМОТРЕТЬ РЕШЕНИЕ

21.29 По проводу, согнутому в виде правильного шестиугольника с длиной стороны, равной 20 см, течет ток 100 A. Найти напряженность магнитного поля в центре шестиугольника. Для сравнения определить напряженность H0 поля в центре кругового провода, совпадающего с окружностью, описанной около данного шестиугольника.
СМОТРЕТЬ РЕШЕНИЕ

21.30 По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
СМОТРЕТЬ РЕШЕНИЕ

21.31 Бесконечно длинный тонкий проводник с током 50 А имеет изгиб плоскую петлю радиусом 10 см. Определить в точке O магнитную индукцию поля, создаваемого этим током, в случаях а-е, изображенных на рис. 21.15.
СМОТРЕТЬ РЕШЕНИЕ

21.32 По плоскому контуру из тонкого провода течет ток 100 A. Определить магнитную индукцию поля, создаваемого этим током в точке O, в случаях а-е, изображенных на рис. 21.16. Радиус R изогнутой части контура равен 20 см.
СМОТРЕТЬ РЕШЕНИЕ

21.33 Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом 53 пм. Вычислить силу эквивалентного кругового тока и напряженность поля в центре окружности.
СМОТРЕТЬ РЕШЕНИЕ

21.34 Определить максимальную магнитную индукцию поля, создаваемого электроном, движущимся прямолинейно со скоростью 10 Мм/с, в точке, отстоящей от траектории на расстоянии d=1 нм.
СМОТРЕТЬ РЕШЕНИЕ

21.35 На расстоянии 10 нм от траектории прямолинейно движущегося электрона максимальное значение магнитной индукции 160 мкТл. Определить скорость электрона.
СМОТРЕТЬ РЕШЕНИЕ
22. Сила, действующая на проводник с током в магнитном поле

1 По двум параллельным прямым проводам длиной 2,5 м каждый, находящимся на расстоянии d=20 см друг от друга, текут одинаковые токи I=1 кА. Вычислить силу F взаимодействия токов.
СМОТРЕТЬ РЕШЕНИЕ

2 Провод в виде тонкого полукольца радиусом R=10 см находится в однородном магнитном поле (B=50 мТл). По проводу течет ток I=10 A. Найти силу F, действующую на провод, если плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода находятся вне поля.
СМОТРЕТЬ РЕШЕНИЕ

3 На проволочный виток радиусом 10 см, помещенный между полюсами магнита, действует максимальный механический момент Mmax=6,5 мкН. Сила тока I в витке равна 2 A. Определить магнитную индукцию B поля между полюсами магнита. Действием магнитного поля Земли пренебречь
СМОТРЕТЬ РЕШЕНИЕ

4 Квадратная рамка со стороной длиной a=2 см, содержащая N=100 витков тонкого провода, подвешена на упругой нити, постоянная кручения C которой равна 10 мкН*м/град. Плоскость рамки совпадает с направлением линии индукции внешнего магнитного поля. Определить индукцию внешнего магнитного поля, если при пропускании по рамке тока I=1 А она повернулась на угол α=60°.
СМОТРЕТЬ РЕШЕНИЕ

5 Плоский квадратный контур со стороной длиной a=10 см, по которому течет ток I=100 A, свободно установился в однородном магнитном поле индукцией B=1 Тл. Определить работу A, совершаемую внешними силами при повороте контура относительно оси, проходящей через середину его противоположных сторон, на угол: 1) φ1=90°; 2) φ2=3°. При повороте контура сила тока в нем поддерживается неизменной.
СМОТРЕТЬ РЕШЕНИЕ

22.1 Прямой провод, по которому течет ток I=1 кА, расположен в однородном магнитном поле перпендикулярно линиям индукции. С какой силой F действует поле на отрезок провода длиной ℓ=1 м, если магнитная индукция В равна 1 Тл?
СМОТРЕТЬ РЕШЕНИЕ

22.2 Прямой провод длиной 10 см, по которому течет ток I=20 A, находится в однородном магнитном поле с индукцией В=0,01 Тл. Найти угол α между направлениями вектора В и тока, если на провод действует сила F=10 мН.
СМОТРЕТЬ РЕШЕНИЕ

22.3 Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
СМОТРЕТЬ РЕШЕНИЕ

22.4 Тонкий провод в виде дуги, составляющей треть кольца радиусом 15 см, находится в однородном магнитном поле (B =20 мТл). По проводу течет ток I=30 A. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и подводящие провода находятся вне поля. Определить силу F, действующую на провод.
СМОТРЕТЬ РЕШЕНИЕ

22.5 По тонкому проводу в виде кольца радиусом R=20 см течет ток I=100 A. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией В=20 мТл. Найти силу F, растягивающую кольцо.
СМОТРЕТЬ РЕШЕНИЕ

22.6 Двухпроводная линия состоит из длинных параллельных прямых проводов, находящихся на расстоянии d=4мм друг от друга. По проводам текут одинаковые токи I=50 A. Определить силу взаимодействия токов, приходящуюся на единицу длины провода.
СМОТРЕТЬ РЕШЕНИЕ

22.7 Шины генератора представляют собой две параллельные медные полосы длиной ℓ=2 м каждая, отстоящие друг от друга на расстоянии d=20 см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I=10 кА.
СМОТРЕТЬ РЕШЕНИЕ

22.8 По двум параллельным проводам длиной ℓ= 1 м каждый текут одинаковые токи. Расстояние d между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
СМОТРЕТЬ РЕШЕНИЕ

22.9 По трем параллельным прямым проводам, находящимся на одинаковом расстоянии a=10 см друг от друга, текут одинаковые токи I=100 A. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной ℓ=1 м каждого провода.
СМОТРЕТЬ РЕШЕНИЕ

22.10 По двум тонким проводам, изогнутым в виде кольца радиусом 10 см, текут одинаковые токи I = 10 А в каждом. Найти силу F взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние d между центрами колец равно 1 мм.
СМОТРЕТЬ РЕШЕНИЕ

22.11 По двум одинаковым квадратным плоским контурам со стороной a=20 см текут токи I=10 А в каждом. Определить силу F взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 2 мм.
СМОТРЕТЬ РЕШЕНИЕ

22.12 По витку радиусом r=5 см течет ток I = 10 A. Определить магнитный момент pm кругового тока.
СМОТРЕТЬ РЕШЕНИЕ

22.13 Очень короткая катушка содержит N=1000 витков тонкого провода. Катушка имеет квадратное сечение со стороной длиной a=10 см. Найти магнитный момент рт катушки при силе тока I = 1 A.
СМОТРЕТЬ РЕШЕНИЕ

22.14 Магнитный момент рт витка равен 0,2 Дж/Тл. Определить силу тока I в витке, если его диаметр d= 10 см.
СМОТРЕТЬ РЕШЕНИЕ

22.15 Напряженность H магнитного поля в центре кругового витка равна 200 А/м. Магнитный момент pm витка равен 1 А*м2. Вычислить силу тока I в витке и радиус R витка.
СМОТРЕТЬ РЕШЕНИЕ

22.16 По кольцу радиусом R течет ток. На оси кольца на расстоянии d=1 м от его плоскости магнитная индукция B=10 нТл. Определить магнитный момент pm кольца с током. Считать R много меньшим d.
СМОТРЕТЬ РЕШЕНИЕ

22.17 Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить магнитный момент рт эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1 Тл.
СМОТРЕТЬ РЕШЕНИЕ

22.18 Электрон в атоме водорода движется вокруг ядра по круговой орбите некоторого радиуса. Найти отношение магнитного момента pm эквивалентного кругового тока к моменту импульса L орбитального движения электрона. Заряд электрона и его массу считать известными. Указать направления векторов рm и L.
СМОТРЕТЬ РЕШЕНИЕ

22.19 По тонкому стержню длиной 20 см равномерно распределен заряд Q=240 нКл. Стержень приведен во вращение с постоянной угловой скоростью ω = 10 рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Определить: 1) магнитный момент рm, обусловленный вращением заряженного стержня; 2) отношение магнитного момента к моменту импульса (pm/L), если стержень имеет массу m= 12 г.
СМОТРЕТЬ РЕШЕНИЕ

22.20 Тонкое кольцо радиусом 10 см несет заряд 10 нКл. Кольцо равномерно вращается с частотой n=10 с-1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Найти: 1) магнитный момент рт кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m кольца равна 10 г.
СМОТРЕТЬ РЕШЕНИЕ

22.21 То же, что и в предыдущей задаче, но относительно оси, совпадающей с одним из диаметров кольца.
СМОТРЕТЬ РЕШЕНИЕ

22.22 Диск радиусом R=10 см несет равномерно распределенный по поверхности заряд Q=0,2 мкКл. Диск равномерно вращается с частотой n=20 с-1 относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить: 1) магнитный момент рт кругового тока, создаваемого диском; 2) отношение магнитного момента к моменту импульса (pm/L), если масса т диска равна 100 г.
СМОТРЕТЬ РЕШЕНИЕ

22.23 Тонкостенная металлическая сфера радиусом R=10 см несет равномерно распределенный по ее поверхности заряд Q=3 мКл. Сфера равномерно вращается с угловой скоростью ω= 10 рад/с относительно оси, проходящей через центр сферы. Найти: 1) магнитный момент рт кругового тока, создаваемый вращением сферы; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m сферы равна 100 г.
СМОТРЕТЬ РЕШЕНИЕ

22.24 Сплошной шар радиусом R = 10см несет заряд Q=200 нКл, равномерно распределенный по объему. Шар вращается относительно оси, проходящей через центр шара, с угловой скоростью ω = 10 рад/с. Определить: 1) магнитный момент рт кругового тока, обусловленного вращением шара; 2) отношение магнитного момента к моменту импульса (pm/L), если масса т шара равна 10 кг.
СМОТРЕТЬ РЕШЕНИЕ

22.25 Проволочный виток радиусом R=5 см находится в однородном магнитном иоле напряженностью H=2 кА/м. Плоскость витка образует угол a=60° с направлением ноля. По витку течет ток I=4 A. Найти механический момент M, действующий на виток.
СМОТРЕТЬ РЕШЕНИЕ

22.26 Виток диаметром d=20 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток I=10 A. Найти механический момент М, который нужно приложить к витку, чтобы удержать его в начальном положении.
СМОТРЕТЬ РЕШЕНИЕ

22.27 Рамка гальванометра длиной a=4 см и шириной b=1,5 см, содержащая N=200 витков тонкой проволоки, находится в магнитном поле с индукцией В=0,1 Тл. Плоскость рамки параллельна линиям индукции. Найти: 1) механический момент M, действующий на рамку, когда по витку течет ток I=1 мА; 2) магнитный момент pm рамки при этом токе.
СМОТРЕТЬ РЕШЕНИЕ

22.28 Короткая катушка площадью S поперечного сечения, равной 150 см2, содержит N=200 витков провода, по которому течет ток I=4 A. Катушка помещена в однородное магнитное поле напряженностью Н=8 кА/м. Определить магнитный момент рm катушки, а также вращающий момент М, действующий на нее со стороны поля, если ось катушки составляет угол α=60с с линиями индукции.
СМОТРЕТЬ РЕШЕНИЕ

22.29 Рамка гальванометра, содержащая 200 витков тонкого провода, подвешена на упругой нити. Площадь S рамки равна 1 см2. Нормаль к плоскости рамки перпендикулярна линиям магнитной индукции (В=5 мТл). Когда через гальванометр был пропущен ток I=2 мкА, то рамка повернулась на угол α=30°. Найти постоянную кручения С нити.
СМОТРЕТЬ РЕШЕНИЕ

22.30 По квадратной рамке из тонкой проволоки массой 2 г пропущен ток 6 A. Рамка свободно подвешена за середину одной из сторон на неупругой нити. Определить период малых колебаний такой рамки в однородном магнитном поле с индукцией В=2 мТл. Затуханием колебаний пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

22.31 Тонкий провод в виде кольца массой m=3 г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток I=2 A. Период Т малых крутильных колебаний относительно вертикальной оси равен 1,2 c. Найти магнитную индукцию В поля.
СМОТРЕТЬ РЕШЕНИЕ

22.32 На оси контура с током, магнитный момент которого рm равен 10 мА*м2, находится другой такой же контур. Вектор магнитного момента второго контура перпендикулярен оси. Вычислить механический момент М, действующий на второй контур. Расстояние d между контурами равно 50 см. Размеры контуров малы по сравнению с расстоянием между ними.
СМОТРЕТЬ РЕШЕНИЕ

22.33 Магнитное поле создано кольцевым проводником радиусом R=20 см, по которому течет ток I=100 A. На оси кольца расположено другое кольцо малых размеров с магнитным моментом рm= = 10 мА*м2. Плоскости колец параллельны, а расстояние d между центрами равно 1 см. Найти силу, действующую на малое кольцо.
СМОТРЕТЬ РЕШЕНИЕ

22.34 Магнитное поле создано бесконечно длинным проводником с током I = 100 A. На расстоянии a=10 см от проводника находится точечный диполь, вектор магнитного момента (pm=1 мА*м2) которого лежит в одной плоскости с проводником и перпендикулярен ему. Определить силу F, действующую на магнитный диполь.
СМОТРЕТЬ РЕШЕНИЕ

22.35 Определить степень неоднородности магнитного поля (dB/dx), если максимальная сила Fmax, действующая на точечный магнитный диполь, равна 1 мН. Магнитный момент pm точечного диполя равен 2 мА*м2.
СМОТРЕТЬ РЕШЕНИЕ

22.36 Проволочный виток радиусом R=20 см расположен в плоскости магнитного меридиана. В центре витка установлен компас. Какой ток I течет по витку, если магнитная стрелка компаса отклонена на угол α=9° от плоскости магнитного меридиана
СМОТРЕТЬ РЕШЕНИЕ

22.37 Определить число N витков катушки тангенс-гальванометра, при котором сила тока, текущего по обмотке, численно равна тангенсу угла отклонения магнитной стрелки, помещенной в центре обмотки? Радиус r катушки равен 25 см. Ось катушки перпендикулярна плоскости магнитного меридиана
СМОТРЕТЬ РЕШЕНИЕ

22.38 Длинный прямой соленоид, содержащий 5 витков на каждый сантиметр длины, расположен перпендикулярно плоскости магнитного меридиана. Внутри соленоида, в его средней части, находится магнитная стрелка, установившаяся в магнитном поле Земли. Когда но соленоиду пустили ток, стрелка отклонилась на угол α=60°. Найти силу тока I
СМОТРЕТЬ РЕШЕНИЕ

22.39 Короткий прямой магнит расположен перпендикулярно плоскости магнитного меридиана. На оси магнита на расстоянии r=50 см от его середины (которое много больше длины магнита) находится магнитная стрелка. Вычислить магнитный момент рт магнита, если стрелка отклонена на угол α=6° от плоскости магнитного меридиана
СМОТРЕТЬ РЕШЕНИЕ

22.40 Конденсатор электроемкостью 50 мкФ заряжается от источника тока, ЭДС которой равна 80 B, и с помощью особого переключателя полностью разряжается 100 раз в секунду через обмотку тангенс-гальванометра, расположенного в плоскости магнитного меридиана. На какой угол α отклонится магнитная стрелка, находящаяся в центре тангенс-гальванометра, если его обмотка имеет N=10 витков радиусом r=25 см?
СМОТРЕТЬ РЕШЕНИЕ

22.41 Магнитная стрелка, помещенная в центре кругового провода радиусом 10 см, образует угол 20 с вертикальной плоскостью, в которой находится провод. Когда по проводу пустили ток I=ЗА, то стрелка повернулась в таком направлении, что угол α увеличился. Определить угол поворота стрелки.
СМОТРЕТЬ РЕШЕНИЕ
23. Сила, действующая на заряд, движущийся в магнитном поле

1 Электрон, пройдя ускоряющую разность потенциалов 400 B, попал в однородное магнитное поле с индукцией B=1,5 мТл. Определить: 1) радиус R кривизны траектории; 2) частоту n вращения электрона в магнитном поле. Вектор скорости электрона перпендикулярен линиям индукции.
СМОТРЕТЬ РЕШЕНИЕ

2 Электрон, имея скорость 2 Мм/с, влетел в однородное магнитное поле с индукцией 30 мТл под углом α=30 к направлению линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон.
СМОТРЕТЬ РЕШЕНИЕ

3 Электрон движется в однородном магнитном поле с индукцией 0,03 Тл по окружности радиусом r=10 см. Определить скорость v электрона.
СМОТРЕТЬ РЕШЕНИЕ

4 Альфа-частица прошла ускоряющую разность потенциалов 104 В и влетела в скрещенные под прямым углом электрическое (E=10 кВ/м) и магнитное (B=0,1 Тл) поля. Найти отношение заряда альфа-частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.
СМОТРЕТЬ РЕШЕНИЕ

23.1 Определить силу Лоренца, действующую на электрон, влетевший со скоростью 4 Мм/с в однородное магнитное поле под углом α=30° к линиям индукции. Магнитная индукция B поля равна 0,2 Тл.
СМОТРЕТЬ РЕШЕНИЕ

23.2 Вычислить радиус R дуги окружности, которую описывает протон в магнитном поле с индукцией B=15 мТл, если скорость v протона равна 2 Мм/с.
СМОТРЕТЬ РЕШЕНИЕ

23.3 Двукратно ионизированный атом гелия (α-частица) движется в однородном магнитном поле напряженностью H=100 кА/м по окружности радиусом R=10 см. Найти скорость v α-частицы.
СМОТРЕТЬ РЕШЕНИЕ

23.4 Ион, несущий один элементарный заряд, движется в однородном магнитном поле с индукцией В=0,015 Тл по окружности радиусом R=10 см. Определить импульс p иона.
СМОТРЕТЬ РЕШЕНИЕ

23.5 Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 см.
СМОТРЕТЬ РЕШЕНИЕ

23.6 Электрон движется в магнитном поле с индукцией B=0,02 Тл по окружности радиусом R=1 см. Определить кинетическую энергию T электрона (в джоулях и электрон-вольтах).
СМОТРЕТЬ РЕШЕНИЕ

23.7 Заряженная частица влетела перпендикулярно линиям индукции в однородное магнитное поле, созданное в среде. В результате взаимодействия с веществом частица, находясь в поле, потеряла половину своей первоначальной энергии. Во сколько раз будут отличаться радиусы кривизны R траектории начала и конца пути?
СМОТРЕТЬ РЕШЕНИЕ

23.8 Заряженная частица, двигаясь в магнитном поле по дуге окружности радиусом R1=2 см, прошла через свинцовую пластину, расположенную на пути частицы. Вследствие потери энергии частицей радиус кривизны траектории изменился и стал равным R2= 1 см. Определить относительное изменение энергии частицы.
СМОТРЕТЬ РЕШЕНИЕ

23.9 Протон, прошедший ускоряющую разность потенциалов U=600 B, влетел в однородное магнитное поле с индукцией B=0,3 Тл и начал двигаться по окружности. Вычислить ее радиус R.
СМОТРЕТЬ РЕШЕНИЕ

23.10 Заряженная частица, обладающая скоростью v=2*10^6 м/с, влетела в однородное магнитное поле с индукцией B=0,52 Тл. Найти отношение Q/m заряда частицы к ее массе, если частица в поле описала дугу окружности радиусом R=4 см. По этому отношению определить, какая это частица.
СМОТРЕТЬ РЕШЕНИЕ

23.11 Заряженная частица, прошедшая ускоряющую разность потенциалов U=2 кВ, движется в однородном магнитном поле с индукцией B=15,1 мТл по окружности радиусом R= 1 см. Определить отношение |е|/m заряда частицы к ее массе и скорость v частицы.
СМОТРЕТЬ РЕШЕНИЕ

23.12 Заряженная частица с энергией 1 кэВ движется в однородном магнитном поле по окружности радиусом R=1 мм. Найти силу F, действующую на частицу со стороны поля.
СМОТРЕТЬ РЕШЕНИЕ

23.13 Электрон движется в однородном магнитном поле с индукцией В=0,1 Тл перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля,если радиус R кривизны траектории равен 0,5 см.
СМОТРЕТЬ РЕШЕНИЕ

23.14 Электрон движется в однородном магнитном поле напряженностью H=4 кА/м со скоростью v=10 Мм/с. Вектор скорости направлен перпендикулярно линиям напряженности. Найти силу F, с которой поле действует на электрон, и радиус R окружности, по которой он движется.
СМОТРЕТЬ РЕШЕНИЕ

23.15 Протон с кинетической энергией Т= 1 МэВ влетел воднородное магнитное поле перпендикулярно линиям индукции (В= 1 Тл). Какова должна быть минимальная протяженность l поля в направлении, по которому летел протон, когда он находился вне поля, чтобы оно изменило направление движения протона на противоположное?
СМОТРЕТЬ РЕШЕНИЕ

23.16 Электрон движется по окружности в однородном магнитном поле напряженностью H=10 кА/м. Вычислить период T вращения электрона.
СМОТРЕТЬ РЕШЕНИЕ

23.17 Определить частоту n вращения электрона по круговой орбите в магнитном поле, индукция B которого равна 0,2 Тл.
СМОТРЕТЬ РЕШЕНИЕ

23.18 Электрон в однородном магнитном поле с индукцией B=0,1 Тл движется по окружности. Найти силу I эквивалентного кругового тока, создаваемого движением электрона.
СМОТРЕТЬ РЕШЕНИЕ

23.19 Электрон, влетев в однородное магнитное поле с индукцией B=0,2 Тл, стал двигаться по окружности радиусом R=5 см. Определить магнитный момент рт эквивалентного кругового тока.
СМОТРЕТЬ РЕШЕНИЕ

23.20 Два однозарядных иона, пройдя одинаковую ускоряющую разность потенциалов, влетели в однородное магнитное поле перпендикулярно линиям индукции. Один ион, масса m1 которого равна 12 a.е.м., описал дугу окружности радиусом R1=4 см. Определить массу m2 другого иона, который описал дугу окружности радиусом R2=6 см.
СМОТРЕТЬ РЕШЕНИЕ

23.21 Два иона, имеющие одинаковый заряд, но различные массы, влетели в однородное магнитное поле. Первый ион начал двигаться по окружности радиусом R1=5 см, второй ион — по окружности радиусом R2=2,5 см. Найти отношение m1/m2 масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.
СМОТРЕТЬ РЕШЕНИЕ

23.22 В однородном магнитном поле с индукцией B=100 мкТл движется электрон по винтовой линии. Определить скорость v электрона, если шаг h винтовой линии равен 20 см, а радиус R=5 см;
СМОТРЕТЬ РЕШЕНИЕ

23.23 Электрон движется в однородном магнитном поле с индукцией B=9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h=7,8 см. Определить период T обращения электрона и его скорость v.
СМОТРЕТЬ РЕШЕНИЕ

23.24 В однородном магнитном поле с индукцией B=2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом R = 10 см и шагом h=60 см. Определить кинетическую энергию Т протона.
СМОТРЕТЬ РЕШЕНИЕ

23.25 Электрон влетает в однородное магнитное поле напряженностью H=16 кА/м со скоростью v=8 Мм/с. Вектор скорости составляет угол α =60° с направлением линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон в магнитном ноле. Определить также шаг винтовой линии для электрона, летящего под малым углом к линиям индукции.
СМОТРЕТЬ РЕШЕНИЕ

23.26 Определить энергию е, которую приобретает протон, сделав N=40 оборотов в магнитном поле циклотрона, если максимальное значение итлх переменной разности потенциалов между дуантами равно 60 кВ. Определить также относительное увеличение Δm/m0 массы протона в сравнении с массой покоя, а также скорость v протона.
СМОТРЕТЬ РЕШЕНИЕ

23.27 Вычислить скорость v и кинетическую энергию Т α-частиц, выходящих из циклотрона, если, подходя к выходному окну, ионы движутся по окружности радиусом R=50 см. Индукция В магнитного поля циклотрона равна 1,7 Тл.
СМОТРЕТЬ РЕШЕНИЕ

23.28 Индукция В магнитного поля циклотрона равна 1 Тл. Какова частота v ускоряющего поля между дуантами, если в циклотроне ускоряются дейтоны?
СМОТРЕТЬ РЕШЕНИЕ

23.29 В циклотроне требуется ускорять ионы гелия (Не++). Частота v переменной разности потенциалов, приложенной к дуантам, равна 10 МГц. Какова должна быть индукция В магнитного поля, чтобы период Т обращения ионов совпадал с периодом изменения разности потенциалов?
СМОТРЕТЬ РЕШЕНИЕ

23.30 Определить число N оборотов, которые должен сделать протон в магнитном поле циклотрона, чтобы приобрести кинетическую энергию T=10 МэВ, если при каждом обороте протон проходит между дуантами разность потенциалов U=30 кВ.
СМОТРЕТЬ РЕШЕНИЕ

23.31 Электрон движется по окружности в однородном магнитном поле со скоростью 0,8 с (скорость света в вакууме). Магнитная индукция поля равна 0,01 Тл. Определить радиус окружности в двух случаях: 1) не учитывая увеличение массы со скоростью; 2) учитывая это увеличение.
СМОТРЕТЬ РЕШЕНИЕ

23.32 Электрон движется в магнитном поле по окружности радиусом R=2 см. Магнитная индукция В поля равна 0,1 Тл. Определить кинетическую энергию Т электрона
СМОТРЕТЬ РЕШЕНИЕ

23.33 Электрон, влетевший в камеру Вильсона, оставил след в виде дуги окружности радиусом R=10 см. Камера находится в однородном магнитном поле с индукцией B=10 Тл. Определить кинетическую энергию Т электрона
СМОТРЕТЬ РЕШЕНИЕ

23.34 Кинетическая энергия α-частицы равна 500 МэВ. Частица движется в однородном магнитном поле по окружности радиусом R=80 см. Определить магнитную индукцию В поля
СМОТРЕТЬ РЕШЕНИЕ

23.35 Электрон, имеющий кинетическую энергию 1,5 МэВ, движется в однородном магнитном поле по окружности. Магнитная индукция В поля равна 0,02 Тл. Определить период τ обращения
СМОТРЕТЬ РЕШЕНИЕ

23.36 Перпендикулярно магнитному полю с индукцией B =0,1 Тл возбуждено электрическое поле напряженностью E = 100 кВ/м. Перпендикулярно обоим полям движется, не отклоняясь от прямолинейной траектории, заряженная частица. Вычислить скорость v частицы
СМОТРЕТЬ РЕШЕНИЕ

23.37 Заряженная частица, двигаясь перпендикулярно скрещенным под прямым углом электрическому (E=400 кВ/м) и магнитному (B=0,25 Тл) полям, не испытывает отклонения при определенной скорости v. Определить эту скорость и возможные отклонения Δv от нее, если значения электрического и магнитного полей могут быть обеспечены с точностью, не превышающей 0,2 %
СМОТРЕТЬ РЕШЕНИЕ

23.38 Протон, пройдя ускоряющую разность потенциалов U =800 B, влетает в однородные, скрещенные под прямым углом магнитное (B=50 мТл) и электрическое поля. Определить напряженность E электрического поля, если протон движется в скрещенных полях прямолинейно
СМОТРЕТЬ РЕШЕНИЕ

23.39 Заряженная частица движется по окружности радиусом R = 1 см в однородном магнитном поле с индукцией B=0,1 Тл. Параллельно магнитному полю возбуждено электрическое поле напряженностью H=100 В/м. Вычислить промежуток времени Δt, в течение которого должно действовать электрическое поле, для того чтобы кинетическая энергия частицы возросла вдвое
СМОТРЕТЬ РЕШЕНИЕ

23.40 Протон влетает со скоростью 100 км/с в область пространства, где имеются электрическое (E=210 В/м) и магнитное (B=3,3 мТл) поля. Напряженность E электрического поля и магнитная индукция В совпадают по направлению. Определить ускорение протона для начального момента движения в поле, если направление вектора его скорости v: 1) совпадает с общим направлением векторов E и B; 2) перпендикулярно этому направлению
СМОТРЕТЬ РЕШЕНИЕ
24. Закон полного тока. Магнитный поток. Магнитные цепи

1 В одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=50 A, расположена прямоугольная рамка так, что две большие стороны ее длиной l=65 см параллельны проводу, а расстояние от провода до ближайшей из этих сторон равно ее ширине. Каков магнитный поток Ф, пронизывающий рамку?
СМОТРЕТЬ РЕШЕНИЕ

2 Определить индукцию B и напряженность H магнитного поля на оси тороида без сердечника, по обмотке которого, содержащей N=200 витков, идет ток I=5 A. Внешний диаметр d1 тороида равен 30 см, внутренний d2=20 см.
СМОТРЕТЬ РЕШЕНИЕ

3 Чугунное кольцо имеет воздушный зазор длиной l0=5 мм. Длина l средней линии кольца равна 1 м. Сколько витков N содержит обмотка на кольце, если при силе тока I=4 А индукция B магнитного поля в воздушном зазоре равна 0,5 Тл? Рассеянием магнитного потока в воздушном зазоре можно пренебречь. Явление гистерезиса не учитывать.
СМОТРЕТЬ РЕШЕНИЕ

24.1 По соленоиду длиной l=1 м без сердечника, имеющему N=10^3 витков (рис. 24.2), течет ток I=20 A. Определить циркуляцию вектора магнитной индукции вдоль контура, изображенного на рис. 24.3, a, б.
СМОТРЕТЬ РЕШЕНИЕ

24.2 Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи I1=10 A, I2=15 A, текущие в одном направлении, и ток I3=20 A, текущий в противоположном направлении.
СМОТРЕТЬ РЕШЕНИЕ

24.3 По сечению проводника равномерно распределен ток плотностью j=2 МА/м2. Найти циркуляцию вектора напряженности вдоль окружности радиусом R=5 мм, проходящей внутри проводника и ориентированной так, что ее плоскость составляет угол α=30° с вектором плотности тока.
СМОТРЕТЬ РЕШЕНИЕ

24.4 Диаметр D тороида без сердечника по средней линии равен 30 см. В сечении тороид имеет круг радиусом r=5 см. По обмотке тороида, содержащей N=2000 витков, течет ток I=5 A (рис. 24.4). Пользуясь законом полного тока, определить максимальное и минимальное значение магнитной индукции В в тороиде.
СМОТРЕТЬ РЕШЕНИЕ

24.5 Найти магнитный поток Ф, создаваемый соленоидом сечением S=10 см2, если он имеет n=10 витков на каждый сантиметр его длины при силе тока I=20 A.
СМОТРЕТЬ РЕШЕНИЕ

24.6 Плоский контур, площадь которого равна 25 см2, находится в однородном магнитном поле с индукцией B=0,04 Тл. Определить магнитный поток Ф, пронизывающий контур, если плоскость его составляет угол β=30° с линиями индукции.
СМОТРЕТЬ РЕШЕНИЕ

24.7 При двукратном обводе магнитного полюса вокруг проводника с током I = 100 А была совершена работа A = 1 мДж. Найти магнитный ноток Ф, создаваемый полюсом.
СМОТРЕТЬ РЕШЕНИЕ

24.8 Соленоид длиной 1 м и сечением S = 16 см2 содержит N = 2000 витков. Вычислить потокосцепление ψ при силе тока I в обмотке 10 A.
СМОТРЕТЬ РЕШЕНИЕ

24.9 Плоская квадратная рамка со стороной a=20 см лежит в одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I = = 100 A. Рамка расположена так, что ближайшая к проводу сторона параллельна ему и находится на расстоянии l=10 см от провода. Определить магнитный поток Ф, пронизывающий рамку.
СМОТРЕТЬ РЕШЕНИЕ

24.10 Определить, во сколько раз отличаются магнитные потоки, пронизывакмцие рамку при двух ее положениях относительно прямого проводника с током, представленных на рис. 24.5.
СМОТРЕТЬ РЕШЕНИЕ

24.11 Квадратная рамка со стороной длиной a=20 см расположена в одной плоскости с прямым бесконечно длинным проводом с током. Расстояние I от провода до середины рамки равно 1 м. Вычислить относительную погрешность, которая будет допущена при расчете магнитного потока, пронизывающего рамку, если поле в пределах рамки считать однородным, а магнитную индукцию — равной значению ее в центре рамки.
СМОТРЕТЬ РЕШЕНИЕ

24.12 Тороид квадратного сечения содержит N=1000 витков. Наружный диаметр D тороида равен 40 см, внутренний d=20 см. Найти магнитный поток Ф в тороиде, если сила тока I, протекающего по обмотке, равна 10 A.
СМОТРЕТЬ РЕШЕНИЕ

24.13 Железный сердечник находится в однородном магнитном поле напряженностью H= 1 к А/м. Определить индукцию В магнитного поля в сердечнике и магнитную проницаемость μ железа.
СМОТРЕТЬ РЕШЕНИЕ

24.14 На железное кольцо намотано в один слой N=500 витков провода. Средний диаметр d кольца равен 25 см. Определить магнитную индукцию В в железе и магнитную проницаемость р. железа, если сила тока I в обмотке: 1) 0,5 А; 2) 2,5 A.
СМОТРЕТЬ РЕШЕНИЕ

24.15 Замкнутый соленоид тороид со стальным сердечником имеет 10 витков на каждый сантиметр длины. По соленоиду течет ток I=2 A. Вычислить магнитный поток Ф в сердечнике, если его сечение S=4 см2.
СМОТРЕТЬ РЕШЕНИЕ

24.16 Определить магнитодвижущую силу Fm, необходимую для получения магнитного потока Ф=0,3 мВб в железном сердечнике замкнутого соленоида (тороида). Длина I средней линии сердечника равна 120 см, площадь сечения S=2,5 см2.
СМОТРЕТЬ РЕШЕНИЕ

24.17 Соленоид намотан на чугунное кольцо сечением 5 см2. При силе тока 1 А магнитный поток Ф=250 мкВб. Определить число n витков соленоида, приходящихся на отрезок длиной 1 см средней линии кольца.
СМОТРЕТЬ РЕШЕНИЕ

24.18 Электромагнит изготовлен в виде тороида. Сердечник тороида со средним диаметром d=51 см имеет вакуумный зазор длиной l0=2 мм. Обмотка тороида равномерно распределена по всей его длине. Во сколько раз уменьшится индукция магнитного поля в зазоре, если, не изменяя силы тока в обмотке, зазор увеличить в n=3 раза? Рассеянием магнитного поля вблизи зазора пренебречь. Магнитную проницаемость р. сердечника считать постоянной и принять равной 800.
СМОТРЕТЬ РЕШЕНИЕ

24.19 Определить магнитодвижущую силу Fm, необходимую для создания магнитного поля индукцией B=1,4 Тл в электромагните с железным сердечником длиной l=90 см и воздушным промежутком длиной l0=5 мм. Рассеянием магнитного потока в воздушном промежутке пренебречь.
СМОТРЕТЬ РЕШЕНИЕ

24.20 В железном сердечнике соленоида индукция B=1,3 Тл. Железный сердечник заменили стальным. Определить, во сколько раз следует изменить силу тока в обмотке соленоида, чтобы индукция в сердечнике осталась неизменной.
СМОТРЕТЬ РЕШЕНИЕ

24.21 Стальной сердечник тороида, длина l которого по средней линии равна 1 м, имеет вакуумный зазор длиной l0=4 мм. Обмотка содержит n=8 витков на 1 см. При какой силе тока I индукция B в зазоре будет равна 1 Тл?
СМОТРЕТЬ РЕШЕНИЕ

24.22 Обмотка тороида, имеющего стальной сердечник с узким вакуумным зазором, содержит 1000 витков. По обмотке течет ток I= 1 A. При какой длине /0 вакуумного зазора индукция B магнитного поля в нем будет равна 0,5 Тл? Длина l тороида по средней линии равна 1 м.
СМОТРЕТЬ РЕШЕНИЕ

24.23 Определить магнитодвижущую силу, при которой в узком вакуумном зазоре длиной l0=3,6 мм тороида с железным сердечником, магнитная индукция B равна 1,4 Тл. Длина l тороида по средней линии равна 0,8 м.
СМОТРЕТЬ РЕШЕНИЕ

24.24 Длина l чугунного тороида по средней линии равна 1,2 м, сечение S=20 см2. По обмотке тороида течет ток, создающий в узком вакуумном зазоре магнитный поток Ф=0,5 мВб. Длина l0 зазора равна 8 мм. Какова должна быть длина зазора, чтобы магнитный поток в нем при той же силе тока увеличился в два раза?
СМОТРЕТЬ РЕШЕНИЕ